Publications
54
Free-Energy Landscapes and Surface Dynamics in Methane Activation on Ni(511) via Machine Learning and Enhanced Sampling
Y. Jin, Y. Xu, J. S. García Sánchez, G. R. Pérez-Lemus, P. F. Zubieta Rico, M. Delferro, and J. J. de Pablo, Free-Energy Landscapes and Surface Dynamics in Methane Activation on Ni(511) via Machine Learning and Enhanced Sampling, ChemRxiv, 2025. DOI: 10.26434/chemrxiv-2025-6wnm2
53
Long Molecular Wires and the Auto-ionization of Water
Y. Xu, S. Varner, Y. Jin, G. Pérez-Lemus, J. Montes de Oca, Z-G. Wang, and J. J. de Pablo, Long Molecular Wires and the Auto-ionization of Water, ChemRxiv, 2024. DOI: 10.26434/chemrxiv-2024-f9bv7
52
A Molecular View of Methane Activation on Ni(111) through Enhanced Sampling and Machine Learning
Y. Xu, Y. Jin, J. S. García Sánchez, G. R. Pérez-Lemus, P. F. Zubieta Rico, M. Delferro, and J. J. de Pablo, A Molecular View of Methane Activation on Ni(111) through Enhanced Sampling and Machine Learning, J. Phys. Chem. Lett., 2024, 15, 9852–9862. DOI: 10.1021/acs.jpclett.4c02237
51
Integrated CO2 Capture and Conversion by a Robust Cu(I)-Based Metal–Organic Framework
D. Sengupta, S. Bose, X. Wang, N. Schweitzer, C. D. Malliakas, H. Xie, J. Duncan, K. O. Kirlikovali, T. Yildirim, and O. K. Farha, Integrated CO2 Capture and Conversion by a Robust Cu(I)-Based Metal–Organic Framework, J. Am. Chem. Soc., 2024, 146, 27006–27013. DOI: 10.1021/jacs.4c08757
50
Electrochemically Determined and Structurally Justified Thermochemistry of H atom Transfer on Ti-Oxo Nodes of the Colloidal Metal–Organic Framework Ti-MIL-125
N. G. Altınçekiç, C. W. Lander, A. Roslend, J. Yu, Y. Shao, and H. Noh, Electrochemically Determined and Structurally Justified Thermochemistry of H atom Transfer on Ti-Oxo Nodes of the Colloidal Metal–Organic Framework Ti-MIL-125, J. Am. Chem. Soc., 2024. DOI: 10.1021/jacs.4c10421
49
Symmetry is the Key to the Design of Reticular Frameworks
A. Darù, J. Anderson, D. Proserpio, and L. Gagliardi, Symmetry is the key to the design of reticular frameworks, ChemRxiv, 2024. DOI: 10.26434/chemrxiv-2024-37wks
48
Advancements in Cerium/Titanium Metal-Organic Frameworks: Unparalleled Stability in CO Oxidation
X. Wang, S. Reischauer, H. Xie, G.-H. Han, H. Wellman, K. O. Kirlikovali, K. Idrees, F. A. Son, J. M. Notestein, and O. K. Farha, Advancements in Cerium/Titanium Metal-Organic Frameworks: Unparalleled Stability in CO Oxidation, Matter, 2024, 7, 3845-3856. DOI: 10.1016/j.matt.2024.07.013
47
Competitive Valerate Binding Enables RuO2-Mediated Butene Electrosynthesis in Water
Š. Kunstelj, A. Darù, A. Sauza-de la Vega, G. D. Stroscio, E. Edwards, R. Papadopoulos, L. Gagliardi, and A. Wuttig, Competitive Valerate Binding Enables RuO2-Mediated Butene Electrosynthesis in Water, J. Am. Chem. Soc., 2024, 146, 20584–20593. DOI: 10.1021/jacs.4c01776
46
A Titanium-Based Metal–Organic Framework For Tandem Metallaphotocatalysis
S. Reischauer, C. S. Smoljan, J. Rabeah, H. Xie, F. Formalik, Z. Chen, S. M. Vornholt, F. Sha, K. W. Chapman, R. Q. Snurr, J. M. Notestein, and O. K. Farha, A Titanium-Based Metal–Organic Framework For Tandem Metallaphotocatalysis, ACS Appl. Mater. Interfaces, 2024, 16, 33371–33378. DOI: 10.1021/acsami.4c03651
45
Node Distortions in UiO-66 Inform Negative Thermal Expansion Mechanisms: Kinetic Effects, Frustration, and Lattice Hysteresis
S. M. Vornholt, Z. Chen, J. Hofmann, and K. W. Chapman, Node Distortions in UiO-66 Inform Negative Thermal Expansion Mechanisms: Kinetic Effects, Frustration, and Lattice Hysteresis, J. Am. Chem. Soc., 2024, 146, 16977–16981. DOI: 10.1021/jacs.4c05313
44
Role of Metal–Organic Framework Topology on Thermodynamics of Polyoxometalate Encapsulation
K. M. Fahy, F. Sha, S. Reischauer, S. Lee, T.-Y. Tai, and O. K. Farha, Role of Metal–Organic Framework Topology on Thermodynamics of Polyoxometalate Encapsulation, ACS Appl. Mater. Interfaces, 2024, 16, 30296–30305. DOI: 10.1021/acsami.4c05016
43
Unveiling Synergetic Photocatalytic Activity from Heterometallic Ti/Ce Clusters
X. Wang, F. Sha, H. Xie, Z. Zengcai, K. B. Idrees, Q. Xu, Y. Liu, L. S. Cho, J. Xiao, K. O. Kirlikovali, J. Ren, J. M. Notestein, and O. K. Farha, Unveiling Synergetic Photocatalytic Activity from Heterometallic Ti/Ce Clusters, ACS Appl. Mater. Interfaces, 2024, 16, 30020–30030. DOI: 10.1021/acsami.4c02961
42
Precise Modulation of CO2 Sorption in Ti8Ce2–Oxo Clusters: Elucidating Lewis Acidity of the Ce Metal Sites and Structural Flexibility
X. Wang, H. Xie, D. Sengupta, F. Sha, K.-i. Otake, Y. Chen, K. B. Idrees, K. O. Kirlikovali, F. A. Son, M. Wang, J. Ren, J. M. Notestein, S. Kitagawa, and O. K. Farha, Precise Modulation of CO2 Sorption in Ti8Ce2–Oxo Clusters: Elucidating Lewis Acidity of the Ce Metal Sites and Structural Flexibility, J. Am. Chem. Soc., 2024, 146, 15130–15142. DOI: 10.1021/jacs.4c01092
41
Deep Learning for Molecular Orbitals
D. King, D. Grzenda, R. Zhu, N. Hudson, I. Foster, and L. Gagliardi, Deep Learning for Molecular Orbitals, ChemRxiv, 2024. DOI: 10.26434/chemrxiv-2024-cvhtp
40
Redox Chemistry Mediated Control of Morphology and Properties in Electrically Conductive Coordination Polymers: Opportunities and Challenges
L. Wang and J. S. Anderson, Redox Chemistry Mediated Control of Morphology and Properties in Electrically Conductive Coordination Polymers: Opportunities and Challenges, Chem. Mater., 2024, 36, 3999–4010. DOI: 10.1021/acs.chemmater.4c00101
39
An Active, Stable Cubic Molybdenum Carbide Catalyst for the High-Temperature Reverse Water-Gas Shift Reaction
M. A. Khoshooei, X. Wang, G. Vitale, F. Formalik, K. O. Kirlikovali, R. Q. Snurr, P. Pereira-Almao, and O. K. Farha, An Active, Stable Cubic Molybdenum Carbide Catalyst for the High-Temperature Reverse Water-Gas Shift Reaction, Science, 2024, 384, 540–546. DOI: 10.1126/science.adl1260
38
Unveiling the Role of Surface Ir-Oxo Species in O2 Evolution at IrO2 Electrocatalysts via Embedded Cluster Multireference Calculations
F. Fasulo, A. Mitra, A. B. Muñoz-García, M. Pavone, and L. Gagliardi, Unveiling the Role of Surface Ir-Oxo Species in O2 Evolution at IrO2 Electrocatalysts via Embedded Cluster Multireference Calculations, J. Phys. Chem. C, 2024, 128, 7343–7351. DOI: 10.1021/acs.jpcc.4c01045
37
A US Perspective on Closing the Carbon Cycle to Defossilize Difficult-to-Electrify Segments of our Economy
W. J. Shaw, M. K. Kidder, S. R. Bare, et al., A US Perspective on Closing the Carbon Cycle to Defossilize Difficult-to-Electrify Segments of our Economy, Nat. Rev. Chem., 2024, 8, 376–400. DOI: 10.1038/s41570-024-00587-1
36
Catalytic, Spectroscopic, and Theoretical Studies of Fe4S4-Based Coordination Polymers as Heterogenous Coupled Proton–Electron Transfer Mediators for Electrocatalysis
N. Jiang, A. Darù, Š. Kunstelj, J. G. Vitillo, M. E. Czaikowski, A. S. Filatov, A. Wuttig, L. Gagliardi, and J. S. Anderson, Catalytic, Spectroscopic, and Theoretical Studies of Fe4S4-Based Coordination Polymers as Heterogenous Coupled Proton–Electron Transfer Mediators for Electrocatalysis, J. Am. Chem. Soc., 2024, 146, 12243–12252. DOI: 10.1021/jacs.4c03726
35
Aliovalent Substitution Tunes Physical Properties in a Conductive Bis(dithiolene) Two-Dimensional Metal–Organic Framework
L. Wang, A. Daru, B. Jangid, J.-H. Chen, N. Jiang, S. N. Patel, L. Gagliardi, and J. S. Anderson, Aliovalent Substitution Tunes Physical Properties in a Conductive Bis(dithiolene) Two-Dimensional Metal–Organic Framework, J. Am. Chem. Soc., 2024, 146, 12063–12073. DOI: 10.1021/jacs.4c01860
34
Constraining Flexibility in the MIL-88 Topology through Integration of 3-Dimensional Linkers
C. S. Smoljan, F. Sha, P. Campitelli, H. Xie, M. A. Eddaoudi, M. R. Mian, C. D. Nicola, K. O. Kirlikovali, R. Q. Snurr, and O. K. Farha, Constraining Flexibility in the MIL-88 Topology through Integration of 3-Dimensional Linkers, Cryst. Growth Des., 2024, 24, 3941–3948. DOI: 10.1021/acs.cgd.4c00287
33
Atomically Precise Single-Site Catalysts via Exsolution in a Polyoxometalate–Metal–Organic-Framework Architecture
Z. Chen, S. M. G. Rabbani, Q. Liu, W. Bi, J. Duan, Z. Lu, N. M. Schweitzer, R. B. Getman, J. T. Hupp, and K. W. Chapman, Atomically Precise Single-Site Catalysts via Exsolution in a Polyoxometalate–Metal–Organic-Framework Architecture, J. Am. Chem. Soc., 2024, 146, 7950–7955. DOI: 10.1021/jacs.4c00523
32
Metal-Ligand Cooperativity in Chemical Electrosynthesis
M. E. Czaikowski, S. W. Anferov, and J. S. Anderson, Metal-Ligand Cooperativity in Chemical Electrosynthesis, Chem Catal., 2024, 4, 100922. DOI: 10.1016/j.checat.2024.100922
31
Modeling Multi-Step Organic Reactions: Can Density Functional Theory Deliver Misleading Chemistry?
H. Li, M. M. Kermani, A. Ottochian, O. Crescenzi, B. G. Janesko, D. G. Truhlar, G. Scalmani, M. J. Frisch, I. Ciofini, and C. Adamo, Modeling Multi-Step Organic Reactions: Can Density Functional Theory Deliver Misleading Chemistry?, J. Am. Chem. Soc., 2024, 146, 6721–6732. DOI: 10.1021/jacs.3c12713
30
Metal–Organic Frameworks as a Tunable Platform to Deconvolute Stereoelectronic Effects on the Catalytic Activity of Thioanisole Oxidation
S. Lee, H. Xie, Z. Chen, M. R. Mian, A. Gómez-Torres, Z. H. Syed, S. Reischauer, K. W. Chapman, M. Delferro, and O. K. Farha, Metal–Organic Frameworks as a Tunable Platform to Deconvolute Stereoelectronic Effects on the Catalytic Activity of Thioanisole Oxidation, J. Am. Chem. Soc., 2024, 146, 3955–3962. DOI: 10.1021/jacs.3c11809
29
Divergent Bimetallic Mechanisms in Copper(II)-Mediated C–C, N–N, and O–O Oxidative Coupling Reactions
D. S. King, F. Wang, J. B. Gerken, C. A. Gaggioli, I. A. Guzei, Y. J. Kim, S. S. Stahl, and L. Gagliardi, Divergent Bimetallic Mechanisms in Copper(II)-Mediated C–C, N–N, and O–O Oxidative Coupling Reactions, Comput. Phys. Commun., 2024, 146, 3521–3530. DOI: 10.1021/jacs.3c13649
28
QMMM 2023: A program for combined quantum mechanical and molecular mechanical modeling and simulations
H. Lin, Y. Zhang, S. Pezeshki, A. W. Duster, B. Wang, X.-P. Wu, S.-W. Zheng, L. Gagliardi, and D. G. Truhlar, QMMM 2023: A program for combined quantum mechanical and molecular mechanical modeling and simulations, Comput. Phys. Commun., 2024, 295, 108987. DOI: 10.1016/j.cpc.2023.108987
27
Mechanism of Benzene Hydroxylation on Tri-Iron Oxo-Centered Cluster-Based Metal–Organic Frameworks
J. G. Vitillo, M. Choudhary, M. C. Simons, L. Gagliardi, and A. Bhan, Mechanism of Benzene Hydroxylation on Tri-Iron Oxo-Centered Cluster-Based Metal–Organic Frameworks, J. Phys. Chem. C, 2023, 127, 23246–23257. DOI: 10.1021/acs.jpcc.3c06423
26
Cluster-Spin-Glass Magnetic Behavior and Morphology in the Coordination Polymer Alloys FeyCo1–yBTT
A. Ritchhart, Z. Chen, A. Behera, I.-R. Jeon, K. W. Chapman, S. Vaikuntanathan, and J. S. Anderson, Cluster-Spin-Glass Magnetic Behavior and Morphology in the Coordination Polymer Alloys FeyCo1–yBTT, J. Am. Chem. Soc., 2023, 145, 24089–24097. DOI: 10.1021/jacs.3c07527
25
The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry
G. Li Manni, I. Galván, A. Alavi, F. Aleotti, F. Aquilante, J. Autschbach, D. Avagliano, A. Baiardi, J. Bao, S. Battaglia, L. Birnoschi, A. Blanco-González, S. Bokarev, R. Broer, R. Cacciari, P. Calio, R. Carlson, R. Couto, L. Cerdán, L. Chibotaru, N. Chilton, J. Church, I. Conti, S. Coriani, J. Cuéllar-Zuquin, R. Daoud, N. Dattani, P. Decleva, C. Graaf, M. Delcey, L. De Vico, W. Dobrautz, S. Dong, R. Feng, N. Ferré, M. Filatov(Gulak), L. Gagliardi, M. Garavelli, L. González, Y. Guan, M. Guo, M. Hennefarth, M. Hermes, C. Hoyer, M. Huix-Rotllant, V. Jaiswal, A. Kaiser, D. Kaliakin, M. Khamesian, D. King, V. Kochetov, M. Krośnicki, A. Kumaar, E. Larsson, S. Lehtola, M. Lepetit, H. Lischka, P. Ríos, M. Lundberg, D. Ma, S. Mai, P. Marquetand, I. Merritt, F. Montorsi, M. Mörchen, A. Nenov, V. Nguyen, Y. Nishimoto, M. Oakley, M. Olivucci, M. Oppel, D. Padula, R. Pandharkar, Q. Phung, F. Plasser, G. Raggi, E. Rebolini, M. Reiher, I. Rivalta, D. Roca-Sanjuán, T. Romig, A. Safari, A. Sánchez-Mansilla, A. Sand, I. Schapiro, T. Scott, J. Segarra-Martí, F. Segatta, D. Sergentu, P. Sharma, R. Shepard, Y. Shu, J. Staab, T. Straatsma, L. Sørensen, B. Tenorio, D. Truhlar, L. Ungur, M. Vacher, V. Veryazov, T. Voß, O. Weser, D. Wu, X. Yang, D. Yarkony, C. Zhou, J. Zobel, and R. Lindh, The OpenMolcas Web: A Community-Driven Approach to Advancing Computational Chemistry, J. Chem. Theory Comput., 2023, 19, 6933–6991. DOI: 10.1021/acs.jctc.3c00182
24
Bioinspired Cu(II) Defect Sites in ZIF-8 for Selective Methane Oxidation
Y. Yang, S. Kanchanakungwankul, S. Bhaumik, Q. Ma, S. Ahn, D. G. Truhlar, and J. T. Hupp, Bioinspired Cu(II) Defect Sites in ZIF-8 for Selective Methane Oxidation, J. Am. Chem. Soc., 2023, 145, 22019–22030. DOI: 10.1021/jacs.3c06981
23
Computational Quantum Chemistry of Metal–Organic Frameworks
I. Choudhuri, J. Ye, and D. G. Truhlar, Computational Quantum Chemistry of Metal–Organic Frameworks, Chem. Phys. Rev., 2023, 4, 031304. DOI: 10.1063/5.0153656
22
Activity of Brønsted Acid Sites in UiO-66 for Cyclohexanol Dehydration
F. Chen, S. Kim, D. Barpaga, J. L. Fulton, R. R. Motkuri, O. Y. Gutiérrez, D. M. Camaioni, and J. A. Lercher, Activity of Brønsted Acid Sites in UiO-66 for Cyclohexanol Dehydration, Top Catal., 2023, 66, 1196–1201. DOI: 10.1007/s11244-023-01830-7
21
Challenge of Small Energy Differences in Metal–Organic Framework Reactivity
N. Dohrmann, D. S. King, C. A. Gaggioli, and L. Gagliardi, Challenge of Small Energy Differences in Metal–Organic Framework Reactivity, J. Phys. Chem. C, 2023, 127, 16891–16900. DOI: 10.1021/acs.jpcc.3c03888
20
Reproducibility of calculations on Li species with correlation-consistent basis sets
M. M. Kermani and D. G. Truhlar, Reproducibility of calculations on Li species with correlation-consistent basis sets, Chem. Phys. Lett., 2023, 825, 140575. DOI: 10.1016/j.cplett.2023.140575
19
Barrier Heights for Diels-Alder Transition States Leading to Pentacyclic Adducts: A Benchmark Study of Crowded, Strained Transition States of Large Molecules
M. M. Kermani, H. Li, A. Ottochian, O. Crescenzi, B. G. Janesko, G. Scalmani, M. J. Frisch, I. Ciofini, C. Adamo, and D. G. Truhlar, Barrier Heights for Diels-Alder Transition States Leading to Pentacyclic Adducts: A Benchmark Study of Crowded, Strained Transition States of Large Molecules, J. Phys. Chem. Lett., 2023, 14, 6522–6531. DOI: 10.1021/acs.jpclett.3c01309
18
Validation of the Cossee–Arlman mechanism for propylene oligomerization on Ni/UiO-66
B. Yeh, S. Chheda, J. Zheng, J. Schmid, L. Löbbert, R. Bermejo-Deval, O. Y. Gutiérrez Tinoco, J. A. Lercher, L. Gagliardi, and A. Bhan, Validation of the Cossee–Arlman mechanism for propylene oligomerization on Ni/UiO-66, Catal. Sci. Technol., 2023, 13, 4213–4222. DOI: 10.1039/D3CY00570D
17
Comparing the Reaction Profiles of Single Iron Catalytic Sites in Enzymes and in Reticular Frameworks for Methane-to-Methanol Oxidation
J. Vitillo, C. Lu, A. Bhan, and L. Gagliardi, Comparing the Reaction Profiles of Single Iron Catalytic Sites in Enzymes and in Reticular Frameworks for Methane-to-Methanol Oxidation, Cell Rep. Phys. Sci., 2023, 4, 101422. DOI: 10.1016/j.xcrp.2023.101422
16
Bimetallic NiCu catalysts supported on a Metal-Organic framework for Non-oxidative ethanol dehydrogenation
Q. Wang, J. Duan, T. Goetjen, J. Hupp, and J. Notestein, Bimetallic NiCu catalysts supported on a Metal-Organic framework for Non-oxidative ethanol dehydrogenation, J. Catal., 2023, 422, 86–98. DOI: 10.1016/j.jcat.2023.04.007
15
Broad Electronic Modulation of 2D Metal-Organic Frameworks Over Four Distinct Redox States
L. Wang, A. Sarkar, G. Grocke, D. Laorenza, B. Cheng, A. Ritchhart, A. Filatov, S. Patel, L. Gagliardi, and J. Anderson, Broad Electronic Modulation of 2D Metal-Organic Frameworks Over Four Distinct Redox States, J. Am. Chem. Soc, 2023, 145, 8486–8497. DOI: 10.1021/jacs.3c00495
14
Synthetic access to a framework-stabilized and fully sulfided analogue of an Anderson polyoxometalate that is catalytically competent for reduction reactions
J. Duan, H. Shabbir, Z. Chen, W. Bi, Q. Liu, J. Sui, L. Dordević, S. I. Stupp, K. Chapman, A. B. F. Martinson, A. Li, S. Goswami, R. D. Schaller, R. Getman, and J. T. Hupp, Synthetic access to a framework-stabilized and fully sulfided analogue of an Anderson polyoxometalate that is catalytically competent for reduction reactions, J. Am. Chem. Soc., 2023, 145, 7268–7277. DOI: 10.1021/jacs.2c12992
13
Pair distribution function analysis of discrete nanomaterials in PDFgui
Z. Chen, M. Beauvais, and K. Chapman, Pair distribution function analysis of discrete nanomaterials in PDFgui, J. Appl. Crystallogr., 2023, 56, 328–337. DOI: 10.1107/S1600576723000237
12
High-Throughput Experimentation, Theoretical Modeling, and Human Intuition: Lessons Learned in Metal–Organic-Framework-Supported Catalyst Design
K. E. McCullough, D. S. King, S. P. Chheda, M. S. Ferrandon, T. A. Goetjen, Z. H. Syed, T. R. Graham, N. M. Washton, O. K. Farha, L. Gagliardi, and M. Delferro, High-Throughput Experimentation, Theoretical Modeling, and Human Intuition: Lessons Learned in Metal–Organic-Framework-Supported Catalyst Design, ACS Cent. Sci., 2023, 9, 266–276. DOI: 10.1021/acscentsci.2c01422
11
Structure and Magnetic Properties of Pseudo-1D Chromium Thiolate Coordination Polymers
A. Ritchhart, A. S. Filatov, I.-R. Jeon, and J. S. Anderson, Structure and Magnetic Properties of Pseudo-1D Chromium Thiolate Coordination Polymers, Inorg. Chem., 2023, 62, 2817–2825. DOI: 10.1021/acs.inorgchem.2c03991
10
Computational and Experimental Characterization of the Ligand Environment of a Ni-Oxo Catalyst Supported in the Metal–Organic Framework NU-1000
S. P. Vicchio, Z. Chen, K. W. Chapman, and R. B. Getman, Computational and Experimental Characterization of the Ligand Environment of a Ni-Oxo Catalyst Supported in the Metal–Organic Framework NU-1000, J. Am. Chem. Soc., 2023, 145, 2852–2859. DOI: 10.1021/jacs.2c10554
9
Influence of 1-Butene Adsorption on the Dimerization Activity of Single Metal Cations on UiO-66 Nodes
L. Löbbert, S. Chheda, J. Zheng, N. Khetrapal, J. Schmid, R. Zhao, C. A. Gaggioli, D. M. Camaioni, R. Bermejo-Deval, O. Y. Gutiérrez, Y. Liu, J. I. Siepmann, M. Neurock, L. Gagliardi, and J. A. Lercher, Influence of 1-Butene Adsorption on the Dimerization Activity of Single Metal Cations on UiO-66 Nodes, J. Am. Chem. Soc., 2023, 145, 1407–1422. DOI: 10.1021/jacs.2c12192
8
Node Distortion as a Tunable Mechanism for Negative Thermal Expansion in Metal–Organic Frameworks
Z. Chen, G. D. Stroscio, J. Liu, Z. Lu, J. T. Hupp, L. Gagliardi, and K. W. Chapman, Node Distortion as a Tunable Mechanism for Negative Thermal Expansion in Metal–Organic Frameworks, J. Am. Chem. Soc., 2023, 145, 268–276. DOI: 10.1021/jacs.2c09877
7
Supervised Learning of a Chemistry Functional with Damped Dispersion
Y. Liu, C. Zhang, Z. Liu, D. G. Truhlar, Y. Wang, and X. He, Supervised Learning of a Chemistry Functional with Damped Dispersion, Nat. Comput. Sci., 2023, 3, 48–58. DOI: 10.1038/s43588-022-00371-5
6
Enhanced Catalytic Performance of a Ce/V Oxo Cluster through Confinement in Mesoporous SBA-15
X. Wang, Z. H. Syed, Z. Chen, J. D. Bazak, X. Gong, M. C. Wasson, N. M. Washton, K. W. Chapman, J. M. Notestein, and O. K. Farha, Enhanced Catalytic Performance of a Ce/V Oxo Cluster through Confinement in Mesoporous SBA-15, ACS Appl. Mater. Interfaces, 2022, 14, 52886–52893. DOI: 10.1021/acsami.2c15046
5
Intrinsic glassy-metallic transport in an amorphous coordination polymer
J. Xie, S. Ewing, J.-N. Boyn, A. S. Filatov, B. Cheng, T. Ma, G. L. Grocke, N. Zhao, R. Itani, X. Sun, H. Cho, Z. Chen, K. W. Chapman, S. N. Patel, D. V. Talapin, J. Park, D. A. Mazziotti, and J. S. Anderson, Intrinsic glassy-metallic transport in an amorphous coordination polymer, Nature, 2022, 611, 479–484. DOI: 10.1038/s41586-022-05261-4