Skip to main content

Publications

Found 79 Results
Publication
79

Cartesian Equivariant Representations for Learning and Understanding Molecular Orbitals

D. King, D. Grzenda, R. Zhu, N. Hudson, I. Foster, B. Cheng, and L. Gagliardi, Cartesian Equivariant Representations for Learning and Understanding Molecular Orbitals, PNAS, 2025, 122, e2510235122. DOI: 10.1073/pnas.2510235122

Publication
78

Computing Reaction Kinetics with MC-PDFT–OPESf: Combining Multireference Electronic Structure Theory and Enhanced Sampling

A. Seal, L. Gagliardi, and A. L. Ferguson, Computing Reaction Kinetics with MC-PDFT–OPESf: Combining Multireference Electronic Structure Theory and Enhanced Sampling, J. Phys. Chem. Lett., 2025, 16, 11458–11463. DOI: 10.1021/acs.jpclett.5c02966

Publication
77

Customizable Aperture Geometry in Metal–Organic Frameworks for Kinetic Hydrocarbon Separation

S. Su, H. Xie, B. Hou, X. Tang, K. O. Kirlikovali, Z. Ye, N. C. Gianneschi, and O. K. Farha, Customizable Aperture Geometry in Metal–Organic Frameworks for Kinetic Hydrocarbon Separation, J. Am. Chem. Soc. 2025, 147, 38647–38656. DOI: 10.1021/jacs.5c13078

Publication
76

Electrocatalytic Hydrogenation with MOF-derived Cobalt Nanoparticles

B. Behera, X. Zheng, H. Xie, A. Darù, M. Maurya, D. Zangeneh, X. Kong, N. Lata, A. Sarkar, J. Hofmann, A. Kumar, Š. Kunstelj, J. Bryant, M. Delferro, K. Chapman, A. Wuttig, R. Klie, R. Getman, O. Farha, L. Gagliardi, and K. Glusac, Electrocatalytic Hydrogenation with MOF-derived Cobalt Nanoparticles, ChemRxiv, 2025. DOI: 10.26434/chemrxiv-2025-wnrb7

Publication
75

Intranodal Proton Hopping in Defect-Free UiO-66: Evidence from Operando NMR and ML-Accelerated Enhanced Sampling

J. Z. Hu, Y. Xu, J. S. García Sánchez, Y. Ji, J. Schmid, Y. Jin, D. J. Bazak, S. Kim, R. Kishan Motkuri, H. Wang, J. T. Hupp, K. Glusac, J. A. Lercher, J. J. de Pablo, and K. T. Mueller, Intranodal Proton Hopping in Defect-Free UiO-66: Evidence from Operando NMR and ML-Accelerated Enhanced Sampling, ChemRxiv, 2025. DOI: 10.26434/chemrxiv-2025-2fln9

Publication
74

Proton, Electron, and Hydrogen-Atom Transfer Thermodynamics of the Metal–Organic Framework, Ti-MIL-125, Are Intrinsically Correlated to the Structural Disorder

N. Gökçe Altınçekiç, C. W. Lander, J. Yu, A. Roslend, Y. Shao, and H. Noh, Proton, Electron, and Hydrogen-Atom Transfer Thermodynamics of the Metal–Organic Framework, Ti-MIL-125, Are Intrinsically Correlated to the Structural Disorder, J. Am. Chem. Soc., 2025, 147, 34777–34790. DOI: 10.1021/jacs.5c10498

Publication
73

Computational Investigation of the Impact of Metal–Organic Framework Topology on Hydrogen Storage Capacity 

K. Liu, H. Chen, T. Islamoglu,  A. S. Rosen, X. Wang, O. K. Farha, and R. Q. Snurr, Computational Investigation of the Impact of Metal–Organic Framework Topology on Hydrogen Storage Capacity, Mol. Syst. Des. Eng., 2025, 10, 817-835. DOI: 10.1039/D5ME00078E

Publication
72

Organophosphorus Binding Thermodynamics in Metal–Organic Frameworks: Interplay between Oxidation State, Lewis Acidity, and Node Structure

K. M. Fahy, B. Hou, P. Garg, S. Lee, C. S. Smoljan, M. K. Shehab, K. O. Kirlikovali, and O. K. Farha, Organophosphorus Binding Thermodynamics in Metal–Organic Frameworks: Interplay between Oxidation State, Lewis Acidity, and Node Structure, ACS Appl. Mater. Interfaces, 2025, 17, 39642–39651. DOI: 10.1021/acsami.5c06791

Publication
71

Reticular Structural Diversification of Zirconium Metal–Organic Frameworks Through Angular Ligand Configuration Control

X. Kong, H. Xie, T. He, J. Liu, X. Wang, Z. Cheng, K. O. Kirlikovali, Z. Ye, and O. K. Farha, Reticular Structural Diversification of Zirconium Metal–Organic Frameworks Through Angular Ligand Configuration Control, J. Am. Chem. Soc., 2025, 147, 18963–18971. DOI: 10.1021/jacs.5c03587

Publication
70

The Road Ahead for Metal–Organic Frameworks: Current Landscape, Challenges and Future Prospects

M. L. Barsoum, K. M. Fahy, W. Morris, V. P. Dravid, B. Hernandez, and O. K. Farha, The Road Ahead for Metal–Organic Frameworks: Current Landscape, Challenges and Future Prospects, ACS Nano, 2025, 19, 13–20. DOI: 10.1021/acsnano.4c14744

Publication
69

Weighted Active Space Protocol for Multireference Machine-Learned Potentials

A. Seal, S. Perego, M. R. Hennefarth, U. Raucci, L. Bonati, A. L. Ferguson, M. Parrinello, and L. Gagliardi, Weighted Active Space Protocol for Multireference Machine-Learned Potentials, PNAS, 2025, 122, e2513693122. DOI: 10.1073/pnas.2513693122

Publication
68

Modeling Oxidative Dehydrogenation of Propane with Supported Vanadia Catalysts Using Multireference Methods

M. Mandal, M. R. Hermes, F. Berger, J. Sauer, and L. Gagliardi, Modeling Oxidative Dehydrogenation of Propane with Supported Vanadia Catalysts Using Multireference Methods, J. Phys. Chem. C, 2025, 129, 14418–14429. DOI: 10.1021/acs.jpcc.5c04695

Publication
67

Enabling Ethanol Dehydrogenation Catalysis by Postsynthetic Anion Exchange of Triazolate-Based Metal–Organic Frameworks

D. A. Grimes, H. Park, C. S. Smoljan, H. Xie, J. M. Notestein, and O. K. Farha, Enabling Ethanol Dehydrogenation Catalysis by Postsynthetic Anion Exchange of Triazolate-Based Metal–Organic Frameworks, J. Am. Chem. Soc., 2025, 147, 27289–27298. DOI: 10.1021/jacs.5c02064

Publication
66

Introducing Metal–Sulfur Active Sites in Metal–Organic Frameworks Via Post-Synthetic Modification for Hydrogenation Catalysis

H. Xie, M. A. Khoshooei, M. Mandal, S. M. Vornholt, J. Hofmann, L. M. Tufaro, K. O. Kirlikovali, D. A. Grimes, S. Lee, S. Su, S. Reischauer, D. Sengupta, K. Fahy, K. Ma, X. Wang, F. Sha, W. Gong, Y. Che, J. G. Vitillo, J. S. Anderson, J. M. Notestein, K. W. Chapman, L. Gagliardi, and O. K. Farha, Introducing Metal–Sulfur Active Sites in Metal–Organic Frameworks Via Post-Synthetic Modification for Hydrogenation Catalysis, Nature Chemistry, 2025, 17, 1514–1523. DOI: 10.1038/s41557-025-01876-y

Publication
65

Impact of MOF Coatings and Electrolyte Composition on the Microenvironment of Copper Electrodes for CO Reduction

M. Maurya, H. Fejzić, X. Krull, H. Nguyen, M. Neurock, J. Hupp, C. Amanchukwu, and R. Getman, Impact of MOF Coatings and Electrolyte Composition on the Microenvironment of Copper Electrodes for CO Reduction, ChemRxiv, 2025. DOI: 10.26434/chemrxiv-2025-jrzms

Publication
64

Metal–Organic Frameworks as Catalysts for (De)Hydrogenation: Progress, Challenges, and Perspectives

D. A. Grimes, S. Lee, M. A. Khoshooei, J. M. Notestein, M. Delferro, and O. K. Farha, Metal–Organic Frameworks as Catalysts for (De)Hydrogenation: Progress, Challenges, and Perspectives, Energy Fuels, 2025, 39, 13811–13824. DOI: 10.1021/acs.energyfuels.5c00988

Publication
63

Exploring Atomic-Scale Interactions at the Interface of Reducible Oxide and Ruthenium Nanocatalyst for Ammonia Decomposition

M. Kim, H. Choi, J. Park, J. Liu, S. Kim, K. Koo, V. P. Dravid, D. Whang, S. Li, and J. T. Hupp, Exploring Atomic-Scale Interactions at the Interface of Reducible Oxide and Ruthenium Nanocatalyst for Ammonia Decomposition, ACS Materials Lett., 2025, 7, 2498–2505. DOI: 10.1021/acsmaterialslett.5c00366

Publication
62

Extreme Ultraviolet and Beyond Extreme Ultraviolet Lithography using Amorphous Zeolitic Imidazolate Resists Deposited by Atomic/Molecular Layer Deposition

K. E Waltz, X. Zhou, X. Krull, S. Singh, E. Mattson, Y. Miao, M. Hettermann, T. Grodt, Q. Zhang, H. Im, B. Lüttgenau, L. Doyle, A. Kraetz, M. Beutner, S. B. Clendenning, D. H. Fairbrother, J. T. Hupp, P. Naulleau, L. Rooney, O. Kostko, and M. Tsapatsis, Extreme Ultraviolet and Beyond Extreme Ultraviolet Lithography using Amorphous Zeolitic Imidazolate Resists Deposited by Atomic/Molecular Layer Deposition, ChemRxiv, 2025. DOI: 10.26434/chemrxiv-2025-s1n4s

Publication
61

Cross-Aldol Condensation on Missing Linker Sites of Metal–Organic Framework UiO-66

R. Zhao, T. R. Scott, J. Schmid, L. Löbbert, R. Bermejo-Deval, Y. Liu, L. Gagliardi, M. Neurock, and J. A. Lercher, Cross-Aldol Condensation on Missing Linker Sites of Metal–Organic Framework UiO-66, Journal of Catalysis, 2025, 448, 116204. DOI: 10.1016/j.jcat.2025.116204

Publication
60

Symmetry is the Key to the Design of Reticular Frameworks

A. Darù, J. Anderson, D. Proserpio, and L. Gagliardi, Symmetry is the key to the design of reticular frameworks, Adv. Mater., 2025, 2414617. DOI: 10.1002/adma.202414617

Publication
59

Structure and Synthesizability of Iron-Sulfur Metal-Organic Frameworks

J. Mao, N. Jiang, A. Darù, A.S. Filatov, J. E. Burch, J. Hofmann, S. M. Vornholt, K. W. Chapman, J. S. Anderson, and A. L. Ferguson, Structure and Synthesizability of Iron-Sulfur Metal-Organic Frameworks, J. Am. Chem. Soc., 2025, 147, 17651–17667. DOI: 10.1021/jacs.4c16341

Publication
58

Water Clustering Modulates Activity and Enables Hydrogenated Product Formation during Carbon Monoxide Electroreduction in Aprotic Media

H. Fejzić, R. J. Kumar, R. J. Gomes, L. He, T. J. Houser, J. Kim, N. Molten, and C. V. Amanchukwu, Water Clustering Modulates Activity and Enables Hydrogenated Product Formation during Carbon Monoxide Electroreduction in Aprotic Media, J. Am. Chem. Soc., 2025, 147, 18445-18459. DOI: 10.1021/jacs.4c07865

Publication
57

Extension of Solvent-Assisted Linker Exchange to Supported Metal–Organic Framework Thin Films

X. Krull, C. Tyler, M. Neurock, and J. T. Hupp, Extension of Solvent-Assisted Linker Exchange to Supported Metal–Organic Framework Thin Films, ChemRxiv, 2025. DOI: 10.26434/chemrxiv-2025-1hft4

Publication
56

Metal-Organic Frameworks at the Edge of Stability: Mediating Node Distortion to Access Metastable Nanoparticle Polymorphs

Z. Chen, S. M. Vornholt, J. T. Bryant, F. Uribe-Romo, and K. W. Chapman, Metal-Organic Frameworks at the Edge of Stability: Mediating Node Distortion to Access Metastable Nanoparticle Polymorphs, Angewandte Chemie, 2025, 64, e202501813. DOI: 10.1002/anie.202501813

Publication
55

MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow

X. Yan, N. Hudson, H. Park, D. Grzenda, J. G. Pauloski, M. Schwarting, H. Pan, H. Harb, S. Foreman, C. Knight, T. Gibbs, K. Chard, S. Chaudhuri, E. Tajkhorshid, I. Foster, M. Moosavi, L. Ward, and E. A. Huerta, MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow, arXiv, 2025. DOI: 10.48550/arXiv.2501.10651

Publication
54

Versatile Sulfidation of a Metal-Organic Framework Via Heterolytic Splitting of Organo Sulfides at Distorted Zr-Nodes

Q. Wang, S. M. Vornholt, P. Melix, F. Formalik, Z. Chen, L. M. Tufaro, J. Liu, B. V. Kramar, Z. Wang, L. X. Chen, R. Q. Snurr, K. W. Chapman, J. M. Notestein, and J. T. Hupp, Versatile Sulfidation of a Metal-Organic Framework Via Heterolytic Splitting of Organo Sulfides at Distorted Zr-Nodes, ChemRxiv, 2024. DOI: 10.26434/chemrxiv-2023-z007q-v2

Publication
53

Elucidating the Geometric and Electronic Structure of a Fully Sulfided Analog of an Anderson Polyoxomolybdate Cluster

S. M. Gulam Rabbani, Z. Chen, J. Sui, J. T. Hupp, K. Chapman, and R. Getman, Elucidating the Geometric and Electronic Structure of a Fully Sulfided Analog of an Anderson Polyoxomolybdate Cluster, J. Mater. Chem. A, 2025. DOI: 10.1039/D5TA03649F

Publication
52

Low-Temperature Oxidation of Simulated Diesel Exhaust Catalyzed by Polyoxovanadate Clusters Stabilized in the Metal-Organic Framework NU-1000

Q. Liu, Z. Hou, Y. Yu, Z. Chen, Y. Huang, C. Wu, H. Yang, W. Bi, K. Chapman, and J. T. Hupp, Low-Temperature Oxidation of Simulated Diesel Exhaust Catalyzed by Polyoxovanadate Clusters Stabilized in the Metal-Organic Framework NU-1000, ChemRxiv, 2025. DOI: 10.26434/chemrxiv-2025-f87x3-v2

Publication
51

Selective Chemical Looping Combustion of Acetylene in Ethylene-Rich Streams

M. Jacob, H. Nguyen, R. Raj, J. Garcia-Barriocanal, J. Hong, J. E. Perez-Aguilar, A. S. Hoffman, K. A. Mkhoyan, S. R. Bare, M. Neurock, and A. Bhan, Selective Chemical Looping Combustion of Acetylene in Ethylene-Rich Streams, Science, 2025, 387, 744–749. DOI:10.1126/science.ads3181

Publication
50

Free-Energy Landscapes and Surface Dynamics in Methane Activation on Ni(511) via Machine Learning and Enhanced Sampling

Y. Jin, Y. Xu, J. S. García Sánchez, G. R. Pérez-Lemus, P. F. Zubieta Rico, M. Delferro, and J. J. de Pablo, Free-Energy Landscapes and Surface Dynamics in Methane Activation on Ni(511) via Machine Learning and Enhanced Sampling, ACS Catal., 2025, 15, 8931–8942. DOI: 10.1021/acscatal.5c00724

Publication
49

Long Molecular Wires and the Auto-ionization of Water

Y. Xu, S. Varner, Y. Jin, G. Pérez-Lemus, J. Montes de Oca, Z-G. Wang, and J. J. de Pablo, Long Molecular Wires and the Auto-ionization of Water, ChemRxiv, 2024. DOI: 10.26434/chemrxiv-2024-f9bv7

Publication
48

A Molecular View of Methane Activation on Ni(111) through Enhanced Sampling and Machine Learning

Y. Xu, Y. Jin, J. S. García Sánchez, G. R. Pérez-Lemus, P. F. Zubieta Rico, M. Delferro, and J. J. de Pablo, A Molecular View of Methane Activation on Ni(111) through Enhanced Sampling and Machine Learning, J. Phys. Chem. Lett., 2024, 15, 9852–9862. DOI: 10.1021/acs.jpclett.4c02237

Publication
47

Integrated CO2 Capture and Conversion by a Robust Cu(I)-Based Metal–Organic Framework

D. Sengupta, S. Bose, X. Wang, N. Schweitzer, C. D. Malliakas, H. Xie, J. Duncan, K. O. Kirlikovali, T. Yildirim, and O. K. Farha, Integrated CO2 Capture and Conversion by a Robust Cu(I)-Based Metal–Organic Framework, J. Am. Chem. Soc., 2024, 146, 27006–27013. DOI: 10.1021/jacs.4c08757

Publication
46

Electrochemically Determined and Structurally Justified Thermochemistry of H atom Transfer on Ti-Oxo Nodes of the Colloidal Metal–Organic Framework Ti-MIL-125

N. G. Altınçekiç, C. W. Lander, A. Roslend, J. Yu, Y. Shao, and H. Noh, Electrochemically Determined and Structurally Justified Thermochemistry of H atom Transfer on Ti-Oxo Nodes of the Colloidal Metal–Organic Framework Ti-MIL-125, J. Am. Chem. Soc., 2024, 146, 33485–33498. DOI: 10.1021/jacs.4c10421

Publication
45

Advancements in Cerium/Titanium Metal-Organic Frameworks: Unparalleled Stability in CO Oxidation

X. Wang, S. Reischauer, H. Xie, G.-H. Han, H. Wellman, K. O. Kirlikovali, K. Idrees, F. A. Son, J. M. Notestein, and O. K. Farha, Advancements in Cerium/Titanium Metal-Organic Frameworks: Unparalleled Stability in CO Oxidation, Matter, 2024, 7, 3845-3856. DOI: 10.1016/j.matt.2024.07.013

Publication
44

Competitive Valerate Binding Enables RuO2-Mediated Butene Electrosynthesis in Water

Š. Kunstelj, A. Darù, A. Sauza-de la Vega, G. D. Stroscio, E. Edwards, R. Papadopoulos, L. Gagliardi, and A. Wuttig, Competitive Valerate Binding Enables RuO2-Mediated Butene Electrosynthesis in Water, J. Am. Chem. Soc., 2024, 146, 20584–20593. DOI: 10.1021/jacs.4c01776

Publication
43

A Titanium-Based Metal–Organic Framework For Tandem Metallaphotocatalysis

S. Reischauer, C. S. Smoljan, J. Rabeah, H. Xie, F. Formalik, Z. Chen, S. M. Vornholt, F. Sha, K. W. Chapman, R. Q. Snurr, J. M. Notestein, and O. K. Farha, A Titanium-Based Metal–Organic Framework For Tandem Metallaphotocatalysis, ACS Appl. Mater. Interfaces, 2024, 16, 33371–33378. DOI: 10.1021/acsami.4c03651

Publication
42

Node Distortions in UiO-66 Inform Negative Thermal Expansion Mechanisms: Kinetic Effects, Frustration, and Lattice Hysteresis

S. M. Vornholt, Z. Chen, J. Hofmann, and K. W. Chapman, Node Distortions in UiO-66 Inform Negative Thermal Expansion Mechanisms: Kinetic Effects, Frustration, and Lattice Hysteresis, J. Am. Chem. Soc., 2024, 146, 16977–16981. DOI: 10.1021/jacs.4c05313

Publication
41

Role of Metal–Organic Framework Topology on Thermodynamics of Polyoxometalate Encapsulation

K. M. Fahy, F. Sha, S. Reischauer, S. Lee, T.-Y. Tai, and O. K. Farha, Role of Metal–Organic Framework Topology on Thermodynamics of Polyoxometalate Encapsulation, ACS Appl. Mater. Interfaces, 2024, 16, 30296–30305. DOI: 10.1021/acsami.4c05016

Publication
40

Unveiling Synergetic Photocatalytic Activity from Heterometallic Ti/Ce Clusters

X. Wang, F. Sha, H. Xie, Z. Zengcai, K. B. Idrees, Q. Xu, Y. Liu, L. S. Cho, J. Xiao, K. O. Kirlikovali, J. Ren, J. M. Notestein, and O. K. Farha, Unveiling Synergetic Photocatalytic Activity from Heterometallic Ti/Ce Clusters, ACS Appl. Mater. Interfaces, 2024, 16, 30020–30030. DOI: 10.1021/acsami.4c02961

Publication
39

Precise Modulation of CO2 Sorption in Ti8Ce2–Oxo Clusters: Elucidating Lewis Acidity of the Ce Metal Sites and Structural Flexibility

X. Wang, H. Xie, D. Sengupta, F. Sha, K.-i. Otake, Y. Chen, K. B. Idrees, K. O. Kirlikovali, F. A. Son, M. Wang, J. Ren, J. M. Notestein, S. Kitagawa, and O. K. Farha, Precise Modulation of CO2 Sorption in Ti8Ce2–Oxo Clusters: Elucidating Lewis Acidity of the Ce Metal Sites and Structural Flexibility, J. Am. Chem. Soc., 2024, 146, 15130–15142. DOI: 10.1021/jacs.4c01092

Publication
38

Redox Chemistry Mediated Control of Morphology and Properties in Electrically Conductive Coordination Polymers: Opportunities and Challenges

L. Wang and J. S. Anderson, Redox Chemistry Mediated Control of Morphology and Properties in Electrically Conductive Coordination Polymers: Opportunities and Challenges, Chem. Mater., 2024, 36, 3999–4010. DOI: 10.1021/acs.chemmater.4c00101

Publication
37

An Active, Stable Cubic Molybdenum Carbide Catalyst for the High-Temperature Reverse Water-Gas Shift Reaction

M. A. Khoshooei, X. Wang, G. Vitale, F. Formalik, K. O. Kirlikovali, R. Q. Snurr, P. Pereira-Almao, and O. K. Farha, An Active, Stable Cubic Molybdenum Carbide Catalyst for the High-Temperature Reverse Water-Gas Shift Reaction, Science, 2024, 384, 540–546. DOI: 10.1126/science.adl1260

Publication
36

Unveiling the Role of Surface Ir-Oxo Species in O2 Evolution at IrO2 Electrocatalysts via Embedded Cluster Multireference Calculations

F. Fasulo, A. Mitra, A. B. Muñoz-García, M. Pavone, and L. Gagliardi, Unveiling the Role of Surface Ir-Oxo Species in O2 Evolution at IrO2 Electrocatalysts via Embedded Cluster Multireference Calculations, J. Phys. Chem. C, 2024, 128, 7343–7351. DOI: 10.1021/acs.jpcc.4c01045

Publication
35

A US Perspective on Closing the Carbon Cycle to Defossilize Difficult-to-Electrify Segments of our Economy

W. J. Shaw, M. K. Kidder, S. R. Bare, et al., A US Perspective on Closing the Carbon Cycle to Defossilize Difficult-to-Electrify Segments of our Economy, Nat. Rev. Chem., 2024, 8, 376–400. DOI: 10.1038/s41570-024-00587-1

Publication
34

Catalytic, Spectroscopic, and Theoretical Studies of Fe4S4-Based Coordination Polymers as Heterogenous Coupled Proton–Electron Transfer Mediators for Electrocatalysis

N. Jiang, A. Darù, Š. Kunstelj, J. G. Vitillo, M. E. Czaikowski, A. S. Filatov, A. Wuttig, L. Gagliardi, and J. S. Anderson, Catalytic, Spectroscopic, and Theoretical Studies of Fe4S4-Based Coordination Polymers as Heterogenous Coupled Proton–Electron Transfer Mediators for Electrocatalysis, J. Am. Chem. Soc., 2024, 146, 12243–12252. DOI: 10.1021/jacs.4c03726

Publication
33

Aliovalent Substitution Tunes Physical Properties in a Conductive Bis(dithiolene) Two-Dimensional Metal–Organic Framework

L. Wang, A. Daru, B. Jangid, J.-H. Chen, N. Jiang, S. N. Patel, L. Gagliardi, and J. S. Anderson, Aliovalent Substitution Tunes Physical Properties in a Conductive Bis(dithiolene) Two-Dimensional Metal–Organic Framework, J. Am. Chem. Soc., 2024, 146, 12063–12073. DOI: 10.1021/jacs.4c01860

Publication
32

Constraining Flexibility in the MIL-88 Topology through Integration of 3-Dimensional Linkers

C. S. Smoljan, F. Sha, P. Campitelli, H. Xie, M. A. Eddaoudi, M. R. Mian, C. D. Nicola, K. O. Kirlikovali, R. Q. Snurr, and O. K. Farha, Constraining Flexibility in the MIL-88 Topology through Integration of 3-Dimensional Linkers, Cryst. Growth Des., 2024, 24, 3941–3948. DOI: 10.1021/acs.cgd.4c00287

Publication
31

Atomically Precise Single-Site Catalysts via Exsolution in a Polyoxometalate–Metal–Organic-Framework Architecture

Z. Chen, S. M. G. Rabbani, Q. Liu, W. Bi, J. Duan, Z. Lu, N. M. Schweitzer, R. B. Getman, J. T. Hupp, and K. W. Chapman, Atomically Precise Single-Site Catalysts via Exsolution in a Polyoxometalate–Metal–Organic-Framework Architecture, J. Am. Chem. Soc., 2024, 146, 7950–7955. DOI: 10.1021/jacs.4c00523

Publication
30

Metal-Ligand Cooperativity in Chemical Electrosynthesis

M. E. Czaikowski, S. W. Anferov, and J. S. Anderson, Metal-Ligand Cooperativity in Chemical Electrosynthesis, Chem Catal., 2024, 4, 100922. DOI: 10.1016/j.checat.2024.100922