Publications
79
Cartesian Equivariant Representations for Learning and Understanding Molecular Orbitals
D. King, D. Grzenda, R. Zhu, N. Hudson, I. Foster, B. Cheng, and L. Gagliardi, Cartesian Equivariant Representations for Learning and Understanding Molecular Orbitals, PNAS, 2025, 122, e2510235122. DOI: 10.1073/pnas.2510235122
78
Computing Reaction Kinetics with MC-PDFT–OPESf: Combining Multireference Electronic Structure Theory and Enhanced Sampling
A. Seal, L. Gagliardi, and A. L. Ferguson, Computing Reaction Kinetics with MC-PDFT–OPESf: Combining Multireference Electronic Structure Theory and Enhanced Sampling, J. Phys. Chem. Lett., 2025, 16, 11458–11463. DOI: 10.1021/acs.jpclett.5c02966
77
Customizable Aperture Geometry in Metal–Organic Frameworks for Kinetic Hydrocarbon Separation
S. Su, H. Xie, B. Hou, X. Tang, K. O. Kirlikovali, Z. Ye, N. C. Gianneschi, and O. K. Farha, Customizable Aperture Geometry in Metal–Organic Frameworks for Kinetic Hydrocarbon Separation, J. Am. Chem. Soc. 2025, 147, 38647–38656. DOI: 10.1021/jacs.5c13078
76
Electrocatalytic Hydrogenation with MOF-derived Cobalt Nanoparticles
B. Behera, X. Zheng, H. Xie, A. Darù, M. Maurya, D. Zangeneh, X. Kong, N. Lata, A. Sarkar, J. Hofmann, A. Kumar, Š. Kunstelj, J. Bryant, M. Delferro, K. Chapman, A. Wuttig, R. Klie, R. Getman, O. Farha, L. Gagliardi, and K. Glusac, Electrocatalytic Hydrogenation with MOF-derived Cobalt Nanoparticles, ChemRxiv, 2025. DOI: 10.26434/chemrxiv-2025-wnrb7
75
Intranodal Proton Hopping in Defect-Free UiO-66: Evidence from Operando NMR and ML-Accelerated Enhanced Sampling
J. Z. Hu, Y. Xu, J. S. García Sánchez, Y. Ji, J. Schmid, Y. Jin, D. J. Bazak, S. Kim, R. Kishan Motkuri, H. Wang, J. T. Hupp, K. Glusac, J. A. Lercher, J. J. de Pablo, and K. T. Mueller, Intranodal Proton Hopping in Defect-Free UiO-66: Evidence from Operando NMR and ML-Accelerated Enhanced Sampling, ChemRxiv, 2025. DOI: 10.26434/chemrxiv-2025-2fln9
74
Proton, Electron, and Hydrogen-Atom Transfer Thermodynamics of the Metal–Organic Framework, Ti-MIL-125, Are Intrinsically Correlated to the Structural Disorder
N. Gökçe Altınçekiç, C. W. Lander, J. Yu, A. Roslend, Y. Shao, and H. Noh, Proton, Electron, and Hydrogen-Atom Transfer Thermodynamics of the Metal–Organic Framework, Ti-MIL-125, Are Intrinsically Correlated to the Structural Disorder, J. Am. Chem. Soc., 2025, 147, 34777–34790. DOI: 10.1021/jacs.5c10498
73
Computational Investigation of the Impact of Metal–Organic Framework Topology on Hydrogen Storage Capacity
K. Liu, H. Chen, T. Islamoglu, A. S. Rosen, X. Wang, O. K. Farha, and R. Q. Snurr, Computational Investigation of the Impact of Metal–Organic Framework Topology on Hydrogen Storage Capacity, Mol. Syst. Des. Eng., 2025, 10, 817-835. DOI: 10.1039/D5ME00078E
72
Organophosphorus Binding Thermodynamics in Metal–Organic Frameworks: Interplay between Oxidation State, Lewis Acidity, and Node Structure
K. M. Fahy, B. Hou, P. Garg, S. Lee, C. S. Smoljan, M. K. Shehab, K. O. Kirlikovali, and O. K. Farha, Organophosphorus Binding Thermodynamics in Metal–Organic Frameworks: Interplay between Oxidation State, Lewis Acidity, and Node Structure, ACS Appl. Mater. Interfaces, 2025, 17, 39642–39651. DOI: 10.1021/acsami.5c06791
71
Reticular Structural Diversification of Zirconium Metal–Organic Frameworks Through Angular Ligand Configuration Control
X. Kong, H. Xie, T. He, J. Liu, X. Wang, Z. Cheng, K. O. Kirlikovali, Z. Ye, and O. K. Farha, Reticular Structural Diversification of Zirconium Metal–Organic Frameworks Through Angular Ligand Configuration Control, J. Am. Chem. Soc., 2025, 147, 18963–18971. DOI: 10.1021/jacs.5c03587
70
The Road Ahead for Metal–Organic Frameworks: Current Landscape, Challenges and Future Prospects
M. L. Barsoum, K. M. Fahy, W. Morris, V. P. Dravid, B. Hernandez, and O. K. Farha, The Road Ahead for Metal–Organic Frameworks: Current Landscape, Challenges and Future Prospects, ACS Nano, 2025, 19, 13–20. DOI: 10.1021/acsnano.4c14744
69
Weighted Active Space Protocol for Multireference Machine-Learned Potentials
A. Seal, S. Perego, M. R. Hennefarth, U. Raucci, L. Bonati, A. L. Ferguson, M. Parrinello, and L. Gagliardi, Weighted Active Space Protocol for Multireference Machine-Learned Potentials, PNAS, 2025, 122, e2513693122. DOI: 10.1073/pnas.2513693122
68
Modeling Oxidative Dehydrogenation of Propane with Supported Vanadia Catalysts Using Multireference Methods
M. Mandal, M. R. Hermes, F. Berger, J. Sauer, and L. Gagliardi, Modeling Oxidative Dehydrogenation of Propane with Supported Vanadia Catalysts Using Multireference Methods, J. Phys. Chem. C, 2025, 129, 14418–14429. DOI: 10.1021/acs.jpcc.5c04695
67
Enabling Ethanol Dehydrogenation Catalysis by Postsynthetic Anion Exchange of Triazolate-Based Metal–Organic Frameworks
D. A. Grimes, H. Park, C. S. Smoljan, H. Xie, J. M. Notestein, and O. K. Farha, Enabling Ethanol Dehydrogenation Catalysis by Postsynthetic Anion Exchange of Triazolate-Based Metal–Organic Frameworks, J. Am. Chem. Soc., 2025, 147, 27289–27298. DOI: 10.1021/jacs.5c02064
66
Introducing Metal–Sulfur Active Sites in Metal–Organic Frameworks Via Post-Synthetic Modification for Hydrogenation Catalysis
H. Xie, M. A. Khoshooei, M. Mandal, S. M. Vornholt, J. Hofmann, L. M. Tufaro, K. O. Kirlikovali, D. A. Grimes, S. Lee, S. Su, S. Reischauer, D. Sengupta, K. Fahy, K. Ma, X. Wang, F. Sha, W. Gong, Y. Che, J. G. Vitillo, J. S. Anderson, J. M. Notestein, K. W. Chapman, L. Gagliardi, and O. K. Farha, Introducing Metal–Sulfur Active Sites in Metal–Organic Frameworks Via Post-Synthetic Modification for Hydrogenation Catalysis, Nature Chemistry, 2025, 17, 1514–1523. DOI: 10.1038/s41557-025-01876-y
65
Impact of MOF Coatings and Electrolyte Composition on the Microenvironment of Copper Electrodes for CO Reduction
M. Maurya, H. Fejzić, X. Krull, H. Nguyen, M. Neurock, J. Hupp, C. Amanchukwu, and R. Getman, Impact of MOF Coatings and Electrolyte Composition on the Microenvironment of Copper Electrodes for CO Reduction, ChemRxiv, 2025. DOI: 10.26434/chemrxiv-2025-jrzms
64
Metal–Organic Frameworks as Catalysts for (De)Hydrogenation: Progress, Challenges, and Perspectives
D. A. Grimes, S. Lee, M. A. Khoshooei, J. M. Notestein, M. Delferro, and O. K. Farha, Metal–Organic Frameworks as Catalysts for (De)Hydrogenation: Progress, Challenges, and Perspectives, Energy Fuels, 2025, 39, 13811–13824. DOI: 10.1021/acs.energyfuels.5c00988
63
Exploring Atomic-Scale Interactions at the Interface of Reducible Oxide and Ruthenium Nanocatalyst for Ammonia Decomposition
M. Kim, H. Choi, J. Park, J. Liu, S. Kim, K. Koo, V. P. Dravid, D. Whang, S. Li, and J. T. Hupp, Exploring Atomic-Scale Interactions at the Interface of Reducible Oxide and Ruthenium Nanocatalyst for Ammonia Decomposition, ACS Materials Lett., 2025, 7, 2498–2505. DOI: 10.1021/acsmaterialslett.5c00366
62
Extreme Ultraviolet and Beyond Extreme Ultraviolet Lithography using Amorphous Zeolitic Imidazolate Resists Deposited by Atomic/Molecular Layer Deposition
K. E Waltz, X. Zhou, X. Krull, S. Singh, E. Mattson, Y. Miao, M. Hettermann, T. Grodt, Q. Zhang, H. Im, B. Lüttgenau, L. Doyle, A. Kraetz, M. Beutner, S. B. Clendenning, D. H. Fairbrother, J. T. Hupp, P. Naulleau, L. Rooney, O. Kostko, and M. Tsapatsis, Extreme Ultraviolet and Beyond Extreme Ultraviolet Lithography using Amorphous Zeolitic Imidazolate Resists Deposited by Atomic/Molecular Layer Deposition, ChemRxiv, 2025. DOI: 10.26434/chemrxiv-2025-s1n4s
61
Cross-Aldol Condensation on Missing Linker Sites of Metal–Organic Framework UiO-66
R. Zhao, T. R. Scott, J. Schmid, L. Löbbert, R. Bermejo-Deval, Y. Liu, L. Gagliardi, M. Neurock, and J. A. Lercher, Cross-Aldol Condensation on Missing Linker Sites of Metal–Organic Framework UiO-66, Journal of Catalysis, 2025, 448, 116204. DOI: 10.1016/j.jcat.2025.116204
60
Symmetry is the Key to the Design of Reticular Frameworks
A. Darù, J. Anderson, D. Proserpio, and L. Gagliardi, Symmetry is the key to the design of reticular frameworks, Adv. Mater., 2025, 2414617. DOI: 10.1002/adma.202414617
59
Structure and Synthesizability of Iron-Sulfur Metal-Organic Frameworks
J. Mao, N. Jiang, A. Darù, A.S. Filatov, J. E. Burch, J. Hofmann, S. M. Vornholt, K. W. Chapman, J. S. Anderson, and A. L. Ferguson, Structure and Synthesizability of Iron-Sulfur Metal-Organic Frameworks, J. Am. Chem. Soc., 2025, 147, 17651–17667. DOI: 10.1021/jacs.4c16341
58
Water Clustering Modulates Activity and Enables Hydrogenated Product Formation during Carbon Monoxide Electroreduction in Aprotic Media
H. Fejzić, R. J. Kumar, R. J. Gomes, L. He, T. J. Houser, J. Kim, N. Molten, and C. V. Amanchukwu, Water Clustering Modulates Activity and Enables Hydrogenated Product Formation during Carbon Monoxide Electroreduction in Aprotic Media, J. Am. Chem. Soc., 2025, 147, 18445-18459. DOI: 10.1021/jacs.4c07865
57
Extension of Solvent-Assisted Linker Exchange to Supported Metal–Organic Framework Thin Films
X. Krull, C. Tyler, M. Neurock, and J. T. Hupp, Extension of Solvent-Assisted Linker Exchange to Supported Metal–Organic Framework Thin Films, ChemRxiv, 2025. DOI: 10.26434/chemrxiv-2025-1hft4
56
Metal-Organic Frameworks at the Edge of Stability: Mediating Node Distortion to Access Metastable Nanoparticle Polymorphs
Z. Chen, S. M. Vornholt, J. T. Bryant, F. Uribe-Romo, and K. W. Chapman, Metal-Organic Frameworks at the Edge of Stability: Mediating Node Distortion to Access Metastable Nanoparticle Polymorphs, Angewandte Chemie, 2025, 64, e202501813. DOI: 10.1002/anie.202501813
55
MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow
X. Yan, N. Hudson, H. Park, D. Grzenda, J. G. Pauloski, M. Schwarting, H. Pan, H. Harb, S. Foreman, C. Knight, T. Gibbs, K. Chard, S. Chaudhuri, E. Tajkhorshid, I. Foster, M. Moosavi, L. Ward, and E. A. Huerta, MOFA: Discovering Materials for Carbon Capture with a GenAI- and Simulation-Based Workflow, arXiv, 2025. DOI: 10.48550/arXiv.2501.10651
54
Versatile Sulfidation of a Metal-Organic Framework Via Heterolytic Splitting of Organo Sulfides at Distorted Zr-Nodes
Q. Wang, S. M. Vornholt, P. Melix, F. Formalik, Z. Chen, L. M. Tufaro, J. Liu, B. V. Kramar, Z. Wang, L. X. Chen, R. Q. Snurr, K. W. Chapman, J. M. Notestein, and J. T. Hupp, Versatile Sulfidation of a Metal-Organic Framework Via Heterolytic Splitting of Organo Sulfides at Distorted Zr-Nodes, ChemRxiv, 2024. DOI: 10.26434/chemrxiv-2023-z007q-v2
53
Elucidating the Geometric and Electronic Structure of a Fully Sulfided Analog of an Anderson Polyoxomolybdate Cluster
S. M. Gulam Rabbani, Z. Chen, J. Sui, J. T. Hupp, K. Chapman, and R. Getman, Elucidating the Geometric and Electronic Structure of a Fully Sulfided Analog of an Anderson Polyoxomolybdate Cluster, J. Mater. Chem. A, 2025. DOI: 10.1039/D5TA03649F
52
Low-Temperature Oxidation of Simulated Diesel Exhaust Catalyzed by Polyoxovanadate Clusters Stabilized in the Metal-Organic Framework NU-1000
Q. Liu, Z. Hou, Y. Yu, Z. Chen, Y. Huang, C. Wu, H. Yang, W. Bi, K. Chapman, and J. T. Hupp, Low-Temperature Oxidation of Simulated Diesel Exhaust Catalyzed by Polyoxovanadate Clusters Stabilized in the Metal-Organic Framework NU-1000, ChemRxiv, 2025. DOI: 10.26434/chemrxiv-2025-f87x3-v2
51
Selective Chemical Looping Combustion of Acetylene in Ethylene-Rich Streams
M. Jacob, H. Nguyen, R. Raj, J. Garcia-Barriocanal, J. Hong, J. E. Perez-Aguilar, A. S. Hoffman, K. A. Mkhoyan, S. R. Bare, M. Neurock, and A. Bhan, Selective Chemical Looping Combustion of Acetylene in Ethylene-Rich Streams, Science, 2025, 387, 744–749. DOI:10.1126/science.ads3181
50
Free-Energy Landscapes and Surface Dynamics in Methane Activation on Ni(511) via Machine Learning and Enhanced Sampling
Y. Jin, Y. Xu, J. S. García Sánchez, G. R. Pérez-Lemus, P. F. Zubieta Rico, M. Delferro, and J. J. de Pablo, Free-Energy Landscapes and Surface Dynamics in Methane Activation on Ni(511) via Machine Learning and Enhanced Sampling, ACS Catal., 2025, 15, 8931–8942. DOI: 10.1021/acscatal.5c00724
49
Long Molecular Wires and the Auto-ionization of Water
Y. Xu, S. Varner, Y. Jin, G. Pérez-Lemus, J. Montes de Oca, Z-G. Wang, and J. J. de Pablo, Long Molecular Wires and the Auto-ionization of Water, ChemRxiv, 2024. DOI: 10.26434/chemrxiv-2024-f9bv7
48
A Molecular View of Methane Activation on Ni(111) through Enhanced Sampling and Machine Learning
Y. Xu, Y. Jin, J. S. García Sánchez, G. R. Pérez-Lemus, P. F. Zubieta Rico, M. Delferro, and J. J. de Pablo, A Molecular View of Methane Activation on Ni(111) through Enhanced Sampling and Machine Learning, J. Phys. Chem. Lett., 2024, 15, 9852–9862. DOI: 10.1021/acs.jpclett.4c02237
47
Integrated CO2 Capture and Conversion by a Robust Cu(I)-Based Metal–Organic Framework
D. Sengupta, S. Bose, X. Wang, N. Schweitzer, C. D. Malliakas, H. Xie, J. Duncan, K. O. Kirlikovali, T. Yildirim, and O. K. Farha, Integrated CO2 Capture and Conversion by a Robust Cu(I)-Based Metal–Organic Framework, J. Am. Chem. Soc., 2024, 146, 27006–27013. DOI: 10.1021/jacs.4c08757
46
Electrochemically Determined and Structurally Justified Thermochemistry of H atom Transfer on Ti-Oxo Nodes of the Colloidal Metal–Organic Framework Ti-MIL-125
N. G. Altınçekiç, C. W. Lander, A. Roslend, J. Yu, Y. Shao, and H. Noh, Electrochemically Determined and Structurally Justified Thermochemistry of H atom Transfer on Ti-Oxo Nodes of the Colloidal Metal–Organic Framework Ti-MIL-125, J. Am. Chem. Soc., 2024, 146, 33485–33498. DOI: 10.1021/jacs.4c10421
45
Advancements in Cerium/Titanium Metal-Organic Frameworks: Unparalleled Stability in CO Oxidation
X. Wang, S. Reischauer, H. Xie, G.-H. Han, H. Wellman, K. O. Kirlikovali, K. Idrees, F. A. Son, J. M. Notestein, and O. K. Farha, Advancements in Cerium/Titanium Metal-Organic Frameworks: Unparalleled Stability in CO Oxidation, Matter, 2024, 7, 3845-3856. DOI: 10.1016/j.matt.2024.07.013
44
Competitive Valerate Binding Enables RuO2-Mediated Butene Electrosynthesis in Water
Š. Kunstelj, A. Darù, A. Sauza-de la Vega, G. D. Stroscio, E. Edwards, R. Papadopoulos, L. Gagliardi, and A. Wuttig, Competitive Valerate Binding Enables RuO2-Mediated Butene Electrosynthesis in Water, J. Am. Chem. Soc., 2024, 146, 20584–20593. DOI: 10.1021/jacs.4c01776
43
A Titanium-Based Metal–Organic Framework For Tandem Metallaphotocatalysis
S. Reischauer, C. S. Smoljan, J. Rabeah, H. Xie, F. Formalik, Z. Chen, S. M. Vornholt, F. Sha, K. W. Chapman, R. Q. Snurr, J. M. Notestein, and O. K. Farha, A Titanium-Based Metal–Organic Framework For Tandem Metallaphotocatalysis, ACS Appl. Mater. Interfaces, 2024, 16, 33371–33378. DOI: 10.1021/acsami.4c03651
42
Node Distortions in UiO-66 Inform Negative Thermal Expansion Mechanisms: Kinetic Effects, Frustration, and Lattice Hysteresis
S. M. Vornholt, Z. Chen, J. Hofmann, and K. W. Chapman, Node Distortions in UiO-66 Inform Negative Thermal Expansion Mechanisms: Kinetic Effects, Frustration, and Lattice Hysteresis, J. Am. Chem. Soc., 2024, 146, 16977–16981. DOI: 10.1021/jacs.4c05313
41
Role of Metal–Organic Framework Topology on Thermodynamics of Polyoxometalate Encapsulation
K. M. Fahy, F. Sha, S. Reischauer, S. Lee, T.-Y. Tai, and O. K. Farha, Role of Metal–Organic Framework Topology on Thermodynamics of Polyoxometalate Encapsulation, ACS Appl. Mater. Interfaces, 2024, 16, 30296–30305. DOI: 10.1021/acsami.4c05016
40
Unveiling Synergetic Photocatalytic Activity from Heterometallic Ti/Ce Clusters
X. Wang, F. Sha, H. Xie, Z. Zengcai, K. B. Idrees, Q. Xu, Y. Liu, L. S. Cho, J. Xiao, K. O. Kirlikovali, J. Ren, J. M. Notestein, and O. K. Farha, Unveiling Synergetic Photocatalytic Activity from Heterometallic Ti/Ce Clusters, ACS Appl. Mater. Interfaces, 2024, 16, 30020–30030. DOI: 10.1021/acsami.4c02961
39
Precise Modulation of CO2 Sorption in Ti8Ce2–Oxo Clusters: Elucidating Lewis Acidity of the Ce Metal Sites and Structural Flexibility
X. Wang, H. Xie, D. Sengupta, F. Sha, K.-i. Otake, Y. Chen, K. B. Idrees, K. O. Kirlikovali, F. A. Son, M. Wang, J. Ren, J. M. Notestein, S. Kitagawa, and O. K. Farha, Precise Modulation of CO2 Sorption in Ti8Ce2–Oxo Clusters: Elucidating Lewis Acidity of the Ce Metal Sites and Structural Flexibility, J. Am. Chem. Soc., 2024, 146, 15130–15142. DOI: 10.1021/jacs.4c01092
38
Redox Chemistry Mediated Control of Morphology and Properties in Electrically Conductive Coordination Polymers: Opportunities and Challenges
L. Wang and J. S. Anderson, Redox Chemistry Mediated Control of Morphology and Properties in Electrically Conductive Coordination Polymers: Opportunities and Challenges, Chem. Mater., 2024, 36, 3999–4010. DOI: 10.1021/acs.chemmater.4c00101
37
An Active, Stable Cubic Molybdenum Carbide Catalyst for the High-Temperature Reverse Water-Gas Shift Reaction
M. A. Khoshooei, X. Wang, G. Vitale, F. Formalik, K. O. Kirlikovali, R. Q. Snurr, P. Pereira-Almao, and O. K. Farha, An Active, Stable Cubic Molybdenum Carbide Catalyst for the High-Temperature Reverse Water-Gas Shift Reaction, Science, 2024, 384, 540–546. DOI: 10.1126/science.adl1260
36
Unveiling the Role of Surface Ir-Oxo Species in O2 Evolution at IrO2 Electrocatalysts via Embedded Cluster Multireference Calculations
F. Fasulo, A. Mitra, A. B. Muñoz-García, M. Pavone, and L. Gagliardi, Unveiling the Role of Surface Ir-Oxo Species in O2 Evolution at IrO2 Electrocatalysts via Embedded Cluster Multireference Calculations, J. Phys. Chem. C, 2024, 128, 7343–7351. DOI: 10.1021/acs.jpcc.4c01045
35
A US Perspective on Closing the Carbon Cycle to Defossilize Difficult-to-Electrify Segments of our Economy
W. J. Shaw, M. K. Kidder, S. R. Bare, et al., A US Perspective on Closing the Carbon Cycle to Defossilize Difficult-to-Electrify Segments of our Economy, Nat. Rev. Chem., 2024, 8, 376–400. DOI: 10.1038/s41570-024-00587-1
34
Catalytic, Spectroscopic, and Theoretical Studies of Fe4S4-Based Coordination Polymers as Heterogenous Coupled Proton–Electron Transfer Mediators for Electrocatalysis
N. Jiang, A. Darù, Š. Kunstelj, J. G. Vitillo, M. E. Czaikowski, A. S. Filatov, A. Wuttig, L. Gagliardi, and J. S. Anderson, Catalytic, Spectroscopic, and Theoretical Studies of Fe4S4-Based Coordination Polymers as Heterogenous Coupled Proton–Electron Transfer Mediators for Electrocatalysis, J. Am. Chem. Soc., 2024, 146, 12243–12252. DOI: 10.1021/jacs.4c03726
33
Aliovalent Substitution Tunes Physical Properties in a Conductive Bis(dithiolene) Two-Dimensional Metal–Organic Framework
L. Wang, A. Daru, B. Jangid, J.-H. Chen, N. Jiang, S. N. Patel, L. Gagliardi, and J. S. Anderson, Aliovalent Substitution Tunes Physical Properties in a Conductive Bis(dithiolene) Two-Dimensional Metal–Organic Framework, J. Am. Chem. Soc., 2024, 146, 12063–12073. DOI: 10.1021/jacs.4c01860
32
Constraining Flexibility in the MIL-88 Topology through Integration of 3-Dimensional Linkers
C. S. Smoljan, F. Sha, P. Campitelli, H. Xie, M. A. Eddaoudi, M. R. Mian, C. D. Nicola, K. O. Kirlikovali, R. Q. Snurr, and O. K. Farha, Constraining Flexibility in the MIL-88 Topology through Integration of 3-Dimensional Linkers, Cryst. Growth Des., 2024, 24, 3941–3948. DOI: 10.1021/acs.cgd.4c00287
31
Atomically Precise Single-Site Catalysts via Exsolution in a Polyoxometalate–Metal–Organic-Framework Architecture
Z. Chen, S. M. G. Rabbani, Q. Liu, W. Bi, J. Duan, Z. Lu, N. M. Schweitzer, R. B. Getman, J. T. Hupp, and K. W. Chapman, Atomically Precise Single-Site Catalysts via Exsolution in a Polyoxometalate–Metal–Organic-Framework Architecture, J. Am. Chem. Soc., 2024, 146, 7950–7955. DOI: 10.1021/jacs.4c00523
30
Metal-Ligand Cooperativity in Chemical Electrosynthesis
M. E. Czaikowski, S. W. Anferov, and J. S. Anderson, Metal-Ligand Cooperativity in Chemical Electrosynthesis, Chem Catal., 2024, 4, 100922. DOI: 10.1016/j.checat.2024.100922